読者です 読者をやめる 読者になる 読者になる

shaitan's blog

長文書きたいときに使う.

東大2001年前期文系問題1

箱庭数学 数学問題bot
白石180個と黒石181個の合わせて361個の碁石が横に一列に並んでいる.
碁石がどのように並んでいても,次の条件を満たす黒の碁石が少なくとも1つあることを示せ.

その黒の碁石とそれより右にある碁石をすべて除くと,残りは白石と黒石が同数となる.
ただし,碁石が1つも残らない場合も同数とみなす.

左からn個までの碁石のうち黒石であるものの数から白石であるものの数を引いた値をa_nとおく.
a_0=0-0=0なので「a_{k-1}\leq0ならばa_k\leq0」が常に成立すればa_{361}\leq0だがa_{361}=181-180=1より矛盾.
よってa_{k-1}\leq0かつa_k>0なるkが存在するが,a_nは1ずつ増減するのでa_{k-1}=0,\ a_k=1
このとき,k番目の石は条件を満たす黒石である.